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Classical nucleation theory revisited
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A field-theoretic derivation of the correction to classical nucleation theory due to translational invariance of
a nucleating droplet is proposed. The correction is derived from a functional integral representation of the
classical partition function, where the two-body interaction potential is decomposed into a short-range repul-
sive part and a long-range attractive part. The functional integral is evaluated in the mean-field approximation,
and the spatially nonuniform density solution of the Euler-Lagrange equation is approximated by a physically
motivated hyperbolic tangent profile. Leading-order effects of the nonlocal attractive interaction are high-
lighted through a density-gradient expansion. The capillarity approximation to the droplet free energy of
formation is obtained by performing a density resummation of the uniform state, low-density expansion of the
Helmholtz free energy density, and by retaining the leading-order density-gradient term. The resulting
translational-invariance correction modifies the droplet free energy by an additive mixing-entropy term. The
additional contribution, which contains a logarithmic correction to the surface-energy term, defines a scaling
volume that depends on the range of the coarse-grained attractive potential.
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I. INTRODUCTION

The proposal by Lothe and Pound@1# that translational
and rotational degrees of freedom of a nucleating emb
~droplet! are not properly accounted for in classical nuc
ation theory has resulted in extensive investigations of c
sical nucleation theory. The so-called translation-rotat
paradox, a paradox closely linked to subtle issues in equ
rium statistical mechanics, has triggered detailed studie
the statistical mechanics of molecular clusters. Simu
neously, nucleation-rate measurement techniques have
siderably improved, see, for example, Ref.@2#, and refer-
ences therein, as have careful analyses of the associated
and mass transfer processes in these devices~laminar flow
diffusion chamber, thermal diffusion chamber, and expans
chamber!. The considerable improvements in experimen
techniques and theoretical developments have only part
improved agreement between theory and experiment.
additional term originally proposed by Lothe and Pound
creased theoretical predictions by approximately 1018, but
subsequent refinements and modifications resulted in lo
factors of the order of 104–106 ~see, e.g., Ref.@3#!, factors
that are still relatively high. Theoretical developments ha
on the other hand, removed inherent inconsistencies in c
sical nucleation theory and they have provided correcti
that are theoretically well founded. The work presen
herein provides an alternative approach to the theoretica
sis of classical nucleation theory and the necessary mo
cations due to translational invariance.

Reiss and co-workers@3–5# have emphasized the impo
tant relation between a proper counting of translational
grees of freedom and the mixing entropy in mesoscopic, c
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tinuum descriptions of nucleation phenomena~and other
systems such as microemulsions!. They argued that in phase
space representations of a physical system the natural s
to distinguish different states, and hence to calculate the t
entropy via an enumeration of distinct states, is Planck’s c
stanth ~the scale of action!. In the semiclassical limit posi-
tion and momenta become continuum variables and, th
there is no natural length scale to distinguish distinct phy
cal states. The translation-rotation paradox may be reso
by a proper determination of a length scale capable to dis
guish different states. Such a length scale, a scale that
essarily becomes dependent on the model adopted, leads
proper incorporation of the mixing entropy in the droplet fr
energy of formation: this additional term has been cal
‘‘replacement free energy.’’ Recently, Reiss, Kegel, and K
@5# suggested that the volume scale for the mixing entro
~in particular, the positional entropy! becomes the varianc
of volume fluctuations: a nucleating droplet may be iden
fied as a distinct physical object up to its volume fluctu
tions. This scale ensures that physical states are not o
counted. A similar problem arises in cell theories of liqui
where a ‘‘communal entropy’’ is introduced@6#.

The effect of center-of-mass fluctuations of a nucleat
cluster on the nucleation rate has been calculated either
detailed analyses of the statistical mechanics of molec
clusters or via density-functional studies. For example, Re
and co-workers and Ford@7# attempted to resolve the para
dox via detailed analyses of the statistical mechanics of m
lecular clusters. On the other hand, Barrett@8#, following the
pioneering work of Langer@9# on a field-theoretic descrip
tion of condensation, adopted such an approach. In the
text of a mixing entropy associated to the droplet’s trans
tional degrees of freedom, his suggestion reduces to
choice of the molecular volume in the liquid state as t
required volume scale. Classical nucleation theory, on
other hand, implicitly assumes that the volume scale is
©2003 The American Physical Society27-1
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Y. DROSSINOS AND P. G. KEVREKIDIS PHYSICAL REVIEW E67, 026127 ~2003!
molecular volume in the vapor phase@5#. Talanquer and Ox-
toby @10# also adopted a density-functional approach to c
culate the correction due to cluster translations to concl
that the correction is relatively small. The paradox has a
been addressed in terms of nonequilibrium kinetics of
nucleation process@11#.

In this work, we pursue further the approach developed
Ref. @12#, henceforth referred to as Paper I, to calcul
modifications of classical nucleation rate due to the tran
tional eigenmodes of a nucleating droplet. There we con
ered the physics of a classical first-order phase transi
starting from a quantum-mechanical many-body Ham
tonian. The approach was based on a proposed analog
tween a~classical! cluster of condensed molecules forming
liquid droplet and a~quantum-mechanical! ground state
‘‘droplet’’ of condensed bosons. Such a description of a cl
ter of condensed molecules is implicit in field-theoretic d
scriptions of condensation.

The quantum partition function for a system of pairwi
interacting Bose particles is presented in Sec. II. The in
action potential is decomposed into a short-range~which will
be taken to be local! repulsive term and a long-range~non-
local! attractive term. We explicitly introduce the symmet
property of the many-body Bose wave function and theh
normalization of the partition function in the functiona
integral measure to obtain the classical partition function a
functional integral. The extremal Euler-Lagrange equation
shown to contain leading-order terms in the low-density
pansion of the chemical potential. We argue that this i
consequence of keeping only two-body interactions in
original microscopic Hamiltonian. The strength of the rep
sive interactions is specified in terms of an effective ha
sphere diameter by comparing the second virial coefficien
that of a van der Waals fluid. Similarities and differenc
with density-functional theory conclude the analysis of S
II.

In Sec. III, we show how the droplet free energy of fo
mation is obtained from the saddle point evaluation of
partition function. The droplet free energy is expressed in
form expected from classical nucleation theory in the ca
larity approximation, namely in terms of a volume and
surface term. Thus, a heuristic justification of classical nuc
ation theory starting from molecular considerations is p
vided. The derivation is based on a physically motivated
satz for the nonuniform density profile that allows us
express the saddle point free energy in terms of a local t
and a nonlocal term. A judicious resummation of the lo
part of the free energy density gives the Helmholtz free
ergy for the uniform states, whereas the gradient expan
of the nonlocal attractive parts leads to the surface-ene
term.

As shown in Paper I, the droplet’s translational eige
modes modify the nucleation rate by the Jacobian for
change of variables to collective coordinates. We evalu
the correction in Sec. IV and we relate it to a general expr
sion for the nucleation rate in Sec. V. In the spirit of t
general formula proposed by Dillmann and Meier@13# for
the droplet free energy, we show in Sec. VI that the propo
modification introduces three additional terms. It modifi
02612
l-
e
o
e

n
e
-

d-
n

-
be-

-
-

r-

a
is
-
a
e
-
-
to
s
.

e
e
l-

-
-
-

m
l
-

on
y

-
e
te
s-

d
s

the surface-energy term, it provides an additive free ene
contribution, and it gives a length scale for incorporation
the mixing entropy. The appropriate length scale becom
the interaction range of the coarse-grained attractive po
tial. Section VII summarizes our findings and presents
conclusions and suggestions for future work. A number
technical details have been relegated to three appendixe

The emphasis of our work is on the translational eige
modes and their contribution to the nucleation rate, i.e.,
the calculation of the mixing entropy. Other fluctuations, f
example, distortions of the droplet surface, that may be
corporated in the droplet free energy as an additio
configurational-entropy term are neglected. A complete c
culation of the nucleation rate requires the incorporation,
an estimate, of the effect of these additional fluctuations
least in a Gaussian approximation. This calculation, howe
is beyond the scope of the present work.

II. FUNCTIONAL-INTEGRAL MEASURE

In Paper I, the quantum-mechanical grand-canonical p
tition function was derived under a number of approxim
tions. The many-body wave function was decomposed
cording to the Bogoliubov prescription@14# into the
expectation value of the field operator, which becomes
order parameter for quantum phase transitions~in particular,
Bose-Einstein condensation!, and a ~quantum! fluctuation
term, which was assumed to be small. Only two-body int
actions were considered by introducing the two-body int
action potentialVint . The interaction potential was decom
posed into a short-range repulsive part and a long-ra
attractive part. As in treatments of Bose-Einstein conden
tion, the short-range repulsive interaction was replaced by
effective local repulsion characterized by a strengthg,
whereas the attractive part was assumed to be nonlocal
spherically symmetric,

Vint~r2r 8!5Vatt~ ur2r 8u!1gd~r2r 8!. ~1!

When the partition function is regularized on a lattice, t
approximation of a local repulsive interaction will be effe
tively relaxed. Later in this section, we show the relation
g to the hard-sphere diameter of a reference fluid.

For a time-independent order parameterf(r ), the parti-
tion function was expressed as a functional integral over fi
configurations

JQM5E D@f#e2bS[f] , ~2!

with b5(kBT)21, T the absolute temperature, andkB the
Boltzmann constant. The appropriate~grand-canonical! ther-
modynamic potential becomes

bV52 ln~J!. ~3!

In the partition function the ‘‘Euclidean action’’ was show
to be
7-2
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CLASSICAL NUCLEATION THEORY REVISITED PHYSICAL REVIEW E67, 026127 ~2003!
S@f#5E dr H \2

2m
~¹f!22Fm2

1

2
f ~r !Gf21

g

2
f4J , ~4!

wherem is the thermodynamic chemical potential, and t
attractive, nonlocal termf (r ) was defined as follows:

f ~r !5E dr 8Vatt~ ur2r 8u!f2~r 8!,0. ~5!

The local number densityr(r )5f2(r ) , and the total num-
ber of particlesN in a volumeV is

N5E
V
drr~r !. ~6!

In Paper I, the properties of the Euler-Lagrange equation
arises in the saddle-point evaluation of the functional integ
were analyzed; in particular, the functional form of the tran
lational eigenmodes of the nucleating droplet was relate
the order parameter. Herein, we concentrate on the clas
partition function and we provide a heuristic derivation
the droplet free energy of formation as described by class
nucleation theory. In doing so, we will provide an explic
correction to the nucleation rate that arises from translatio
invariance of the nucleating droplet center of mass, nam
that the droplet may nucleate anywhere in the system
ume.

The interpretation of the functional integral@Eq. ~2!# be-
comes unequivocal in its discretized form. This discretizat
~which is a lattice regularization! also eliminates ultraviole
catastrophes by introducing a high wave number cutoff ik
space. In the classical limit, the Euclidean action become
functional of the local number density and the gradient te
is eliminated. It is well known@15# that two essentia
quantum-mechanical aspects remain in the classical part
function: the symmetry property of the many-body wa
function and theh normalization of the classical partitio
function. The latter gives the limit of accuracy due to t
uncertainty principle in assigning particle coordinates a
momenta to a particular phase-space point.

We present a heuristic derivation of the discrete functio
measure: the two quantum-mechanical effects are inco
rated in anad hocmanner in the classical partition functio
by considering the occupation number representation of
field operator. A formal derivation of the limiting procedu
is beyond the scope of the present work~see, for example
Ref. @15#!.

In the lattice regularization, the system volume is divid
in M cells of linear sizea. Let ni be the number of particle
within cell i; then the local density becomesr i5ni /a3.
Symmetry requirements for indistinguishable particles int
duce a factorial termni !. Theh factor arises from integration
over the particle momenta to give the following discrete v
sion of the functional integral:

Jcl5 lim
M→`

E )
$ni %

dr i

1

Ar i

1

Ni

1

ni !

1

L̄3ni
e2bSa[r i ] , ~7!
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where L̄5L/a with L5h/(2pmkBT)1/2 the thermal de
Broglie wavelength. The square root of the local densityr i
comes from the change of variables fromf i to r i , Ni is a
normalization constant, and the product is over all config
rations$ni%. The exponentSa@r i # is the discretized version
of Eq. ~4! without the kinetic energy term that drops out
leading order inh.

If the measure prefactor in Eq.~7! is expressed as a
exponential, the factorial terms are expanded according
the Stirling approximation, and leading-order terms are k
~the Jacobian of thef i to r i change of variables drops out t
leading order!, we obtain

expH a3(
i

@r i ln~r iL
3!2r i #J . ~8!

A careful inspection of the measure prefactor of Eq.~7! ren-
ders intuitively clear the origin of the entropic term in E
~8!. It is, in essence, the indistinguishability of the classic
particles ~their ‘‘bosonic’’ nature! which is responsible for
the existence~and relevance! of such an entropic contribu
tion in the ~effective! action. Recent related discussions
the origin of such a contribution can be found in Re
@16,17#.

As discussed in Ref.@16#, the properties of the interactio
potential, and, in particular, the interaction potential deco
position, have to be analyzed carefully when taking the c
tinuum limit of the classical expressions, Eqs.~7! and ~8!.
The decomposition into a short-range~local! repulsive term
and a long-range~nonlocal! attractive term implies the exis
tence of an effective hard-sphere diameters. Two distinct
length scales have to be considered: the lattice spacinga and
the hard-sphere diameters. For a<s, the occupation num-
ber of a given lattice site can be only 0,1, and the partit
function becomes the lattice-gas partition function. Fors
!a, multiple site occupation is allowed, but a coarse gra
ing over microscopic length scales is implicitly made. Thu
the strength of the repulsive interactiong becomes a measur
of an effective hard-sphere diameter and the nonlocal att
tive interaction is interpreted as a coarse-grained attrac
potential.

With these provisoes and with the correspondencea3(
→* dr and ni /a3→r(r ) ~see, for example, Ref.@18#!, the
continuum limit is taken to obtain the functional-integral re
resentation of the classical partition function

Jcl5E Dr exp~2bScl@r#!, ~9!

where

bScl@r#5E d3r H 2bmr~r !1
1

2
b f ~r !r~r !1

1

2
bgr2~r !

1r~r !ln@L3r~r !#2r~r !J . ~10!

The normalization constant has been absorbed in the m
sureDr. This representation of the classical partition fun
7-3
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Y. DROSSINOS AND P. G. KEVREKIDIS PHYSICAL REVIEW E67, 026127 ~2003!
tion is similar to the functional integral presented in R
@16#, apart from a different treatment of the hard-core rep
sive interaction. The last two terms in Eq.~10! are the Helm-
holtz free energy density of an ideal monoatomic class
gas. The first term may be identified as an external fi
coupled to the density~or the corresponding Lagrange mu
tiplier!, and the remaining two terms are nonideal correctio
arising from intermolecular interactions. They are recogniz
as the first terms in a density expansion of the nonideal
of the classical free energy density~for an inhomogeneous
system!.

For a spherically symmetric~coarse-grained! attractive
potential, the Euler-Lagrange equation that determines
mean-field~inhomogeneous! density profile is

bm5b f ~r !1bgr~r !1 ln@L3r~r !#. ~11!

The nature of the low-density expansion becomes m
transparent by considering a uniform fluid of densityr; the
extremum equation becomes

bm5bm ideal~T,r!12B2~T!r1O~r2!, ~12!

where we have used the ideal gas chemical poten
bm ideal(T,r)5 ln(L3r). The coefficient of the linear term
B2(T) is the second virial coefficient since the density e
pansion of the chemical potential is@19,20#

bm~r,T!5bm ideal1 (
k>1

k11

k
Bk11rk. ~13!

In the expansion Eq.~12!, the second virial coefficient is

B2~T!5 1
2 b~g2a!, ~14!

with a the positive measure of the attractive interaction

a52E
V
drVatt~r !. ~15!

The effective~renormalized! strength of the repulsive inter
actiong is determined by comparingB2(T) with the second
virial coefficient of a van der Waals fluid. A comparison
our expressions@Eq. ~11!# or ~12! with those for a classica
~monoatomic! van der Waals fluid is appropriate since o
expressions have been obtained in the high-tempera
low-density limit. The van der Waals second virial coef
cient is

B2
vdW~T!5

2p

3
s32

1

2
ba. ~16!

A natural way to match the attractive and repulsive parts
the virial coefficients of Eqs.~14! and~16!, as per our earlier
discussion, yields

bg5
4p

3
s3, ~17!

wheres is the diameter of the effective hard-sphere core
02612
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It is instructive to rewrite the uniform-density limit of Eq
~11! in terms of a hard-sphere reference fluid with packi
fraction h5prs3/6,

bm2 ln~L3!5 ln r18h2abr1O~r2!, ~18!

where we have used the relation ofg to the hard-sphere
diameter of the reference fluid, Eq.~17!. The first two terms
are the low-density terms of the hard-sphere chemical po
tial ~in, for example, the Carnahan-Starling hard-sph
equation of state@19#!. Thus, a density resummation of Eq
~18! gives

bm2 ln~L3!5bmHS~T,r!2abr1O~r2!, ~19!

wheremHS is the chemical potential of a hard-sphere ref
ence fluid. Explicit calculations with it require, of course, a
approximation for the reference hard-sphere fluid. The
summed equation Eq.~19! is the uniform-fluid, extremum
equation used in density-functional theory~see, for example,
Ref. @21#!. It differs from ~12! in that only the hard-sphere
~repulsive! part of the free energy has been resummed
the attractive part is treated perturbatively. On the ot
hand, Eq.~12! is a proper low-density expansion: both th
attractive and the repulsive parts of the interaction poten
contribute at every order in the density expansion. If high
order terms in the attractive potential were incorporated
the density-functional expansion, then the two equatio
would become identical order by order in the perturbat
expansion.

III. PHENOMENOLOGY OF CLASSICAL NUCLEATION
THEORY

The free energy of formation of a nucleating droplet a
pears naturally in the saddle point evaluation of the partit
function, Eqs.~9! and ~10!. It is the free energy difference
corresponding to two solutions of the Euler-Lagrange eq
tion: the ~spatially! nonuniform solution and the uniform
metastable vapor state

bDS!5bSdrop2bSv . ~20!

The connection to classical nucleation theory is made
performing a gradient expansion of the nonlocal termf (r ).
The functionr(r 8) is Taylor expanded aboutr(r ) to obtain,
assuming spherical symmetry, the square-gradient appr
mation to the free energy

bS@r#5E dr F1

2
bm2~“r!22bmr~r !1B2~T!r2~r !

1r~r !ln@L3r~r !#2r~r !G , ~21!

wherem2 is the second moment of the attractive potentia

m252
1

6E dr r 2Vatt~r !. ~22!
7-4
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CLASSICAL NUCLEATION THEORY REVISITED PHYSICAL REVIEW E67, 026127 ~2003!
Details of the gradient expansion and the derivation of
~21! are presented in Appendix A. As usual, the gradi
expansion assumes that the average density varies sl
over microscopic distances. Then the critical droplet free
ergy becomes

bDS!5E dr H 1

2
bm2~“r!22~bm11!@rdrop~r !2rv#

1B2~T!@rdrop
2 ~r !2rv

2#1rdrop~r !ln@L3rdrop~r !#

2rvln@L3rv#J . ~23!

Its evaluation requires the solution of the correspond
extremum equation for the nonuniform droplet-density p
file: if the nonlocal attractive potential is specified, the de
sity profile can be obtained numerically. Instead, we follo
the approach taken in Paper I: since detailed information
the intermolecular interaction potential for an arbitrary s
tem may not be available, physical intuition will be used
postulate a functional form for the density profile.

Specifically, the density close to the center of mass of
droplet is almost constant and equal to a liquid densityr l . In
what follows, we will assume thatr l is the metastable liquid
density, i.e., we will be neglecting nonclassical effects~see,
e.g., Ref.@21#!. This is not necessary for our derivation, b
it simplifies the calculations and is consistent with classi
nucleation theory. Away from the droplet surface, the den
approaches exponentially fast the metastable vapor de
rv ~which is considered as an imposed boundary condit
as is usually the case in nucleation experiments!. The main
density variation occurs over a short interfacial length sc
j, and is quite rapid~typically assumed to be exponentia!.
Thus, following Langer’s@9# considerations for a Landau
Ginzburgf4 free energy with a hyperbolic-tangent dens
profile, and accepting his arguments about universality f
tures of the transition, we make the following density-profi
ansatz:

rdrop~r !5
1

2
~rv2r l !tanhS r 2Rc

j D1
1

2
~rv1r l !. ~24!

The critical droplet radius isRc andj is the interfacial cor-
relation length. The proposed profile is a reasonable appr
mation forRc@j, i.e., close to the coexistence curve and
way from the critical point or the spinodal. Most of the r
sults that follow may be obtained by postulating other~simi-
lar! functional forms that respect the previously mention
constraints~for example, the profile suggested in Paper!,
including a u-function profile. The choice of a
u-function-density variation corresponds to the capillar
approximation of classical nucleation theory. However,
hyperbolic-tangent profile has the added advantage th
depends on two length scales: the critical-droplet radius,
the interfacial correlation length. As will become appare
later, the interfacial correlation length plays an important r
in the final expression for the nucleation rate.
02612
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Our analysis up to here has been fairly general un
well-defined approximations. Further developments requ
the use of the ansatz. The previous arguments suggest
the postulated droplet profile captures the essential chara
istics of the density profile of a droplet. The effect of diffe
ent density-profile choices on our main results is briefly d
cussed in Sec. IV.

Given the ansatz for the nonuniform density the free
ergy expression, Eq.~23! is evaluated in the limit of classica
nucleation theory,Rc@j (Rc /j→`). The limiting proce-
dure is divided into two parts: the calculation of the loc
terms~volume contribution! and the nonlocal terms~surface
contribution!. For completeness we present some results
the volume part obtained withMathematica@23#: an exten-
sive discussion of the limiting procedure is given in Appe
dix B. In particular,

lim
Rc@j

E dr @rdrop~r !2rv#5
4p

3
Rc

3~r l2rv!H 11
p2

4 S j

Rc
D 2

1OF S j

Rc
D 2nG J , ~25a!

lim
Rc@j

E dr @rdrop
2 ~r !2rv

2#

5
4p

3
Rc

3~r l
22rv

2!H 12
3

2

~r l1rv!2

r l
22rv

2

j

Rc
1

p2

4 S j

Rc
D 2

1OF S j

Rc
D 3G J , ~25b!

lim
Rc@j

E dr$rdrop~r !ln@L3rdrop~r !#2rvln~L3rv!%

5
4p

3
Rc

3@r l ln~L3r l !2rvln~L3rv!#1O@exp~2Rc /j!#.

~25c!

Hence the local terms contribute to the volume part of
free energy as follows:

bDSvolume
! '

4p

3
Rc

3@2~bm11!~r l2rv!1B2~T!~r l
22rv

2!

1r l ln~L3r l !2rvln~L3rv!#1O~rv
3 ,r l

3!.

~26!

According to classical thermodynamics, the low-dens
expansion of the Helmholtz free energy densityf H is @see,
also, Eq.~13!#

b f H~r!5r ln~L3r!2r1B2~T!r21O~r3!, ~27!

whereB2(T) is the second virial coefficient of the fluid un
der consideration. Inspection of Eq.~26! shows that terms
may be regrouped to obtain the low-density expansion~to
order r2) of the Helmholtz free energy for the~uniform!
7-5
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liquid and the vapor phases. To the same order the l
density terms may be replaced by the free energy density~the
density series is resummed! and with the identification of the
two virial coefficients the full free energy density is obtaine
Hence, Eq.~26! is rewritten as

bDSvolume
! 5b

4p

3
Rc

3@ f H~r l !2mr l #2b
4p

3
Rc

3@ f H~rv!

2mrv#1O~r l
3 ,rv

3!. ~28!

But f H(r)2mr is the density of the grand-canonical pote
tial v(r)52P(r) for a uniform system of densityr and
pressureP(r) ~sinceV52PV). Therefore, the volume par
of free energy of formation becomes

bDSvolume
! 5b

4p

3
Rc

3@v~r l !2v~rv!#1O~r3!

52b
4p

3
Rc

3@P~r l !2P~rv!#1O~r3!, ~29!

where the term multiplying the pressure is the droplet v
ume ~leading-order term in theRc@j limit !. For a careful
discussion of the evaluation of the nucleation barrier in
canonical and grand-canonical ensembles see, e.g., R
@21,24#. Their analysis implies, as we have shown, that
volume part of droplet free energy is the difference of t
grand canonical potentials in the two uniform states. For
incompressible liquid and an ideal gas vapor, the press
difference between the center of the liquid drop and
metastable bulk vapor can be calculated to be@21#

b@P~r l !2P~rv!#5r l lnS Pv

Psat
D , ~30!

to give the final expression for the volume part of the drop
free energy

bDSvolume
! 52

4p

3
Rc

3r l ln~S!. ~31!

The classical nucleation theory approximation for the satu
tion ratio S5Pv /Psat was used in Eq.~31!, with Psat the
saturation pressure, andPv the pressure of the metastab
vapor. As expected, the volume part is negative~for S.1).
The critical radius may be replaced by the critical number
molecules~monomers, as they are usually called in nuc
ation studies! in the liquid dropletNcr , defined as

Ncr54pE
0

Rc
dr r 2rdrop~r !. ~32!

In the large-droplet limit withr l@rv , the critical number of
monomers becomes

lim
Rc@j

Ncr5
4p

3
r lRc

3H 12
3

2

j

Rc
ln~2!1OF S j

Rc
D 2G J . ~33!

This follows from Eq.~B4! in Appendix B.
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The nonlocal free energy termf (r ) leads to a~positive!
surface contribution to the droplet free energy. This may
shown to leading order in the gradient expansion. Spec
cally, the gradient term becomes

lim
Rc@j

E dr ~“r!25
4p

3
~r l2rv!2

Rc
2

j H 11
p226

12 S j

Rc
D 2

1OF S j

Rc
D 2(n11)G J . ~34!

The surface term may be reexpressed in terms ofgR , the
macroscopic surface tension for a curved interface. In
square-gradient approximation,

gR5m2E
0

`

drUdr

drU
2

. ~35!

In the large-droplet limit, the surface tension becomes

lim
Rc@j

gR5
m2

3j
~r l2rv!21O@exp~2Rc /j!#. ~36!

Hence, the correlation length may be eliminated from E
~34! via Eq. ~36! in favor of the surface tension to obtain

1

2
bm2E dr ~“r!2 5

Rc@j

2pbgRRc
2 . ~37!

Thus, the mean-field approximation of the functional integ
with the proper resummation of the low-density terms,
square-gradient approximation of the nonlocal attract
term, and a physically motivated ansatz for the nonunifo
density profile lead to the following expression for free e
ergy of formation of the nucleating droplet:

bDS!52
4p

3
r l ln~S!Rc

312pbgRRc
2 . ~38!

As expected from classical nucleation theory, Eq.~38!
splits into a negative volume term and a positive surfa
term. The volume term is identical to the classical nucleat
theory term, whereas the surface term becomes the clas
term if we identifygR52g` , an identification we will use in
subsequent sections. Hence, we have rederived the clas
nucleation theory free energy starting from a molecular lev
field-theoretic action using the density as the relevant or
parameter.

IV. COLLECTIVE COORDINATES JACOBIAN

In Paper I, we showed that the contribution of the tran
lational eigenmodes of the nucleating droplet to the nuc
ation rate is related to the Jacobian of the change of varia
to the collective coordinates associated to these modes
discussed in Ref.@25#, translational invariance~in an infinite
system! implies the existence of a zero eigenvalue of t
second-order free energy operator that describes Gaus
fluctuations about the droplet configuration. Functional in
7-6
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gration over these zero-eigenvalue translational eigenmo
leads to a divergence. This divergence is spurious and
be eliminated by changing variables to collective coor
nates. Therefore, the origin of the Jacobian in the nucleat
rate expression is the functional-integral measure co
sponding to the translational eigenvalues.

The Jacobian, expressed here in terms of the local den
r(r ) instead of the condensate wave functionf(r ) ~as de-
rived in Paper I!, is

Jtran5Fp

3E0

`

dr r 2
1

r~r ! S dr

dr D
2G3/2

. ~39!

The division byr(r ) ensures that the Jacobian has dime
sions of inverse volume.

In the spirit of this work, and of classical nucleatio
theory, the Jacobian is evaluated in the hyperbolic-tang
ansatz. Furthermore, if we assume thatr l@rv , the integral
may be evaluated, and in the limitRc@j @Eq. ~B6!# becomes

Jtran5S p

3

r l

j D 3/2

Rc
3H 11

3

2

j

Rc
1OF S j

Rc
D 2G J

5
A3p

12 S r l

j3D 1/2

Ncr . ~40!

The Jacobian depends ontwo length scales: the critical ra-
dius and the interfacial correlation length, a dependence
would have been absent had we used au-function density
profile.

The effect of the ansatz on the Jacobian@Eq. ~40!# may be
estimated by comparing it with the Jacobian calculated
Paper I. There a slightly different density profile was us
@fans

2 (r )Þrdrop(r )#, but the resulting Jacobian differs from
the one calculated here only in the numerical prefactors
fact, dimensional arguments and an estimate of the inte
@Eq. ~39!# lead to the same dependence ofJtran on j, r l , and
Ncr ~up to numerical constants!.

The numerical solution of the Euler-Lagrange equat
@21# usually starts with an initial guess for the critical radi
Rc , taken from classical nucleation theory, and then an ite
tion scheme is used to obtain the saddle-point solution wi
~possibly! new Rc , the interfacial correlation lengthj, and
the liquid density at the origin of the droplet,r l . In the
absence of the numerical solution for the density profile,
correlation length remains an unknown; the liquid density,
mentioned earlier, is taken to be the metastable liquid den
neglecting nonclassical effects. It has been suggested@8# to
relatej to the liquid density. Instead it is eliminated in favo
of the the surface tension, cf. leading-order term in Eq.~36!.
Thus, consistent with the approximations made in this wo
the Jacobian becomes

Jtran5
3Ap

4 S gR

m2
D 3/2

r l
25/2Ncr . ~41!

As mentioned in the Introduction, density-function
theory has been used to estimate the effect of the tran
tional eigenmodes without introducing a functional integr
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see, for example, Refs.@8,10#. The calculations presente
herein provide an alternative approach. Moreover, as arg
in Sec. II ~see also Ref.@9#!, the functional integral appear
naturally in field-theoretic descriptions of condensation.
the following section, we show how the saddle-point eva
ation of the functional integral leads to a correction to t
nucleation rate~due to translational invariance! that is con-
sistent with classical nucleation theory.

V. NUCLEATION RATE

The determination of the nucleation rate from t
functional-integral expression has been discussed extens
in the past@9,12,26–28#. Under some general assumptio
~coarse-grained free energy, small supersaturation,
Gaussian approximation of the functional integral!, the
nucleation rate may be written as

I nuc5
k

2p
V JtranV8e2bDV!

, ~42!

where DV! is the free energy of formation of the critica
droplet,k the dynamical prefactor, andV8 the contribution
of Gaussian fluctuations about the~uniform! metastable and
the ~spatially nonuniform! saddle-point density profiles. Th
term V8, a generalization of the Zeldovich factor, may b
viewed as the leading-order correction to the droplet exc
free energy arising from the configurational entropy of t
droplet. The prime denotes that fluctuations correspondin
the translational eigenmodes of the nucleating droplet h
been excluded: they have been treated separately, as sum
rized in the preceding section. The complete expression
V8 may be found in, for example, Ref.@29#, whereas an
intriguing suggestion to relate the nucleation rate to
imaginary part of the true system free energy is presente
Ref. @27#. The dynamical prefactork, a quantity that de-
pends on the dynamics of the system, is the initial grow
rate of a droplet larger than the critical size.

In previous sections, we showed that the mean-field
proximation of the classical partition function gives a drop
free energy that may be cast in terms of a volume plu
surface term. Hence, the exponentbDV! is identified with
the critical droplet free energy as given by the capillar
approximation. The JacobianJtran becomes the consisten
correction to classical nucleation theory due to translatio
invariance. The lengthy derivations of Secs. III and IV a
thereby justified in that they show thatthe Jacobian become
a correction to the nucleation rate that is consistent w
classical nucleation theory (CNT). The self-consistent deri
vation of this correction from an order parameter bas
field-theoretic point of view~at the level of molecular inter-
actions! is one of the main findings of this work.

The remaining unknowns,k and V8, are determined by
comparing Eq.~42! to the classical nucleation rate. The cla
sical rate, without the factor 1/S frequently introducedad
hoc to ensure consistency with the one-monomer limit~see,
however, Ref.@5#!, is @30#
7-7
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I CNT5rvS 2g`

pm D 1/2rv

r l
V e2bDVCNT

!
, ~43!

which for the purposes of the comparison is expressed a

I CNT5bg~Ncr!Zcr~Ncr!Vrve2bDVCNT
!

. ~44!

The classical prefactor naturally separates into the produc
three terms: the growth rate~impingement factor! bg(Ncr),
the classical Zeldovich factorZcr(Ncr), and the vapor den
sity rv times the exponential of the droplet free energy
formation. The last factor is the equilibrium concentration
critical clusters containingNcr molecules. The growth rate i
the rate at which the critical cluster grows by one monom
it is calculated from kinetic theory of gases to be~the accom-
modation coefficient has been set to unity!

bg~Ncr!591/3S 2

p D 1/6S b

mD 1/2

P~rv!~Ncrv l !
2/3, ~45!

wherev l51/r l is the molecular volume. The Zeldovich fac
tor gives the contribution to the nucleation rate of numb
fluctuations in the critical droplet as

Zcr~Ncr!5~bg`!1/2S 2

9pr lNcr
2 D 1/3

. ~46!

The ideal gas law has been used to relate vapor quant
bP(rv)5rv51/vv .

Comparison of the two nucleation-rate expressions, E
~42! and ~43!, suggests the identification of the dynamic
prefactork/(2p) with the growth ratebg(Ncr) and the fluc-
tuations correctionV8 with the Zeldovich factorZcr(Ncr).
These identifications imply that the growth rate is given
the kinetic-theory result for the number of collisions betwe
two molecules in a gas, and that the only critical-drop
fluctuations incorporated are number fluctuations. Thus,
modified nucleation rate becomes

I nuc5bg~Ncr!Zcr~Ncr!V Jtrane
2bDVCNT

!
~47a!

5
3

Am

g`
2

m2
3/2S rv

2

r l
7D 1/2

VNcre
2bDVCNT

!
. ~47b!

In writing the last equality the correlation length was elim
nated in favor of the macroscopic surface tension. Since
product of the growth rate times the Zeldovich factor is
mensionless, inspection of Eq.~47a! shows that the Jacobia
ensures that the nucleation rate per unit volume has the
rect dimensions. In the classical rate@Eq. ~44!#, the vapor
density ensures that the rate has correct dimensions.

VI. CLASSICAL NUCLEATION THEORY MODIFIED

The modified classical nucleation rate@Eq. ~47b!# is re-
written in a more suggestive form so that it may be compa
to previous proposals for the incorporation of translatio
corrections. Following the suggestion that these additio
degrees of freedom contribute to the leading-order correc
02612
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I nuc5S 2g`

pm D 1/2rv

r l
e2bDVmod

!
, ~48!

where the prefactor is the product of the classical growth r
times the Zeldovich factor~both evaluated at the critica
monomer numberNcr), and the other terms have been exp
nentiated to give

bDVmod
! 52Ncrln S1uNcr

2/32 ln~VJtran!. ~49!

For notational simplicity we introduced the dimensionle
surface tensionu5(36p)1/3bg` /r l

2/3. The first two terms in
Eq. ~49! are the free energy of formation of anNcr-monomer
cluster according to classical nucleation theory; the last te
is

2 ln~VJtran!52
3

2
ln~uNcr

2/3!2 lnF V

~bal2r l !
3/2G . ~50!

The second moment of the attractive potentialm2 was elimi-
nated from Eq.~50! in terms of the range of the attractiv
potentiall defined as

l25
1

3

E dr r 2Vatt~r !

E drVatt~r !

5
2m2

a
. ~51!

Thus, the final expression for the modified droplet free e
ergy of formation becomes

bDVmod
! 52Ncrln S1uNcr

2/32
3

2
ln~uNcr

2/3!1
3

2
ln~bar l !

2 lnS V

l3D . ~52!

A decomposition of the correction to the classical express
has been chosen such that each term may be interpr
physically. The first correction term is a logarithmic corre
tion to the surface-free energy term. The second is an a
tive ~logarithmic! contribution to the free energy of forma
tion: the argument of the logarithm is the~dimensionless!
average attractive energy in the condensed phase. The
term defines a length scale~or equivalently a volume scale!
necessary for a correct counting of translational states
the calculation of the corresponding entropy term, as su
marized in the Introduction. For completeness we calcu
the relevant parameters~such asl and a) for a Lennard-
Jones-type potential in Appendix C.

The decomposition presented in Eq.~52! suggests that
there is a ‘‘natural’’ proper scale for the definition of an e
fective volume, necessary to treat translational degree
freedom~equivalently, the length scale to be used to dist
guish different states or configurations!. This length scale is
defined at the molecular level and is related to the range
the attractive interaction potential.
7-8
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The proposed free energy may be compared to the
quently used general formula for anN cluster

bDV~N!52N ln S1kNuN2/31t ln N2 ln~q0V!. ~53!

The quantity kN describesN-dependent deviations of th
cluster surface energy from that of a macroscopic liq
droplet, whereast andq0 are adjustable parameters. The fi
two terms are the volume and surface contributions con
ered in classical nucleation theory, the others are terms
positional and configurational entropies.

Equation~53! is based on the droplet model proposed
Fisher @31# and reelaborated by Dillmann and Meier@13#.
Droplet models may be expressed in this form:t50 yields
the classical theory~no mechanical degrees of freedom!, t
524 yields the theory of Lothe-Pound@1# ~translational and
rotational degrees of freedom!, 3/2,t,21/2 yields ver-
sions of the Reiss-Katz-Cohen@3# theories~center-of-mass
fluctuations!. Dillmann and Meier proposedt;2.2, whereas
Fisher @31# argued that the nonclassical contribution aro
from the droplet configurational entropy to obtain57

26 <t
< 11

2 . Each theory has its own value forq0, and kN51 is
common to all of them. The functional form of theN term
suggests that it is an entropic contribution. Note that Eq.~53!
is a general expression for anN-cluster, whereas the mod
fied expression@Eq. ~52!# has been evaluated at the extrem
configurations~i.e., atNcr).

The modified formula expressed in this form yields

kN512
3

2

ln u

u
Ncr

22/3, ~54!

andt521.
Recently Reiss, Kegel, and Katz~RKK! @5# proposed an

intuitively appealing correction. They argued that a drop
can be defined up to volume fluctuations: their expression
the correction to classical nucleation theory is

bDVRKK52 lnFVS br l

NkT
D 1/2G , ~55!

where kT is the isothermal compressibility. The compres
ibility equation is@32#

]r

]P
5b1brE dr @g~r !21#, ~56!

where g(r ) is the radial distribution function of the fluid
may be used to replacekT in terms of molecular quantities
Substitution yields

bDVRKK52 ln
V

v l
1

1

2
ln N1 lnH 11r lE

V
dr @g~r !21#J .

~57!

In the low-density limit, the logarithm may be expande
g(r )→exp@2bV12(r )#, and the integral may be related
the second virial coefficient
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B2~T!52
1

2E dr @e2bV12(r )21# ~58!

to obtain

lim
r→0

bDVRKK52 ln
V

v l
1

1

2
ln N22r lB2~T!. ~59!

Thus, if the same decomposition is made for the RKK theo
the molecular volume in the condensed phase becomes
scaling volume, andt511/2. A similar dependence on th
molecular volume in the liquid phase has been proposed
Barrett @8#, but with a dependence onNcr that is similar to
the one derived in this work,t521.

VII. SUMMARY AND CONCLUSIONS

The contribution of a nucleating droplet’s translational d
grees of freedom to classical nucleation rate was addre
in this work. Our calculation was based on a field-theore
description of a cluster of condensed-phase molecules
terms of a nonuniform density profile of a liquid-state dro
let. This approach, originally proposed in Ref.@12#, was mo-
tivated by its successful use in quantum phase transit
~and, in particular, in Bose-Einstein condensation!. Starting
from the many-body Hamiltonian for a system of interacti
Bose particles, a functional-integral representation of
classical partition function was obtained. The symme
properties of the many-body Bose wave function and thh
normalization factor of the classical partition function we
introduced in the functional-integral measure. The class
entropy term (r ln r) in the partition-function action was di
rectly related to the symmetry properties of the many-bo
wave function, and in particular to particle indistinguishab
ity. Only two-body interactions were considered, an appro
mation that leads to a low-density expansion of the appro
ate classical thermodynamic potential.

The intermolecular interaction potential was decompo
into a short-range~local! repulsive part and a long-rang
~nonlocal! attractive part. This decomposition naturally led
the identification of two different length scales: the latti
spacinga, a length scale introduced in the lattice regulariz
tion of the functional integral, and an effective hard-sphe
diameters. It was argued that fors!a, the continuum limit
of the partition function implies a coarse graining of th
initial attractive interaction potential. In that limit, the pa
rameter that characterizes short-range repulsive interact
was specified in terms of an effective hard-sphere diame

The free energy of formation of the nucleating drop
was obtained in the saddle-point evaluation of the functio
integral as the free energy difference of two extremal c
figurations: the~spatially! nonuniform field configuration
and the uniform metastable configuration. This free ene
difference was related to the capillarity approximation
classical nucleation theory by postulating a physically mo
vated nonuniform density profile. The density ansatz w
used to resum the low-density expansion to obtain the He
holtz free energy density of a uniform fluid~be it vapor or
liquid!. The nonlocal attractive term was expanded in gra
7-9
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ents, retaining only the leading-order square-gradient ter
In the limit of a droplet radius much larger than the inte

facial correlation length, a limit consistent with the capilla
ity approximation, we showed that the local free energy te
gives a negative volume contribution to the droplet free
ergy~for saturation ratios greater than unity! and the gradient
term a positive surface contribution. Thus, the expression
the droplet free energy in the capillarity approximation w
obtained in the mean-field approximation of the function
integral. This argument provides a~valid in the appropriate
low-density limit, yet not rigorous! justification of the fre-
quently postulated classical expression starting from mic
scopic~i.e., molecular level! considerations. It was noted tha
in the classical density-functional theory of nucleation, on
the hard-sphere part is resummed, whereas the attractive
of the interaction potential is kept as a leading-order per
bation.

As discussed in the past, see, for example, R
@12,27,29# the nucleation-rate prefactor was expressed as
product of a dynamical prefactor times a statistical prefac
We argued that the exponential term in the nucleation
reduces to the classical nucleation theory expression.
statistical prefactor was split into a contribution of the tran
lational eigenmodes and a contribution of all other Gauss
fluctuations about the saddle and metastable configurati
The translational eigenmodes were treated as describe
Paper I and summarized herein, whereas the dynamical p
actor was approximated by the droplet growth rate as gi
by kinetic theory. Furthermore, only critical-number fluctu
tions were considered. This approximation corresponds
keeping only the negative eigenvalue of the saddle-p
Gaussian-fluctuations matrix, an approximation that redu
to the so-called Zeldovich factor in classical nucleati
theory.

The consistent incorporation of the effect of translatio
eigenmodes in the nucleation rate along with the connec
of the classical droplet free energy to the evaluation of
partition function are the main results of our work.

The modification of the classical nucleation rate was f
mally viewed as a modification of the droplet free ener
The resulting expression was discussed in terms of the
eral formula proposed by Dillmann and Meier@13# for the
droplet free energy of formation. We showed that the ad
tional terms modify the surface energy and contribute
additive ~logarithmic! contribution. More importantly, we
showed that the proper length scale for the calculation of
entropy associated to droplet’s translational states is rel
to the interaction range of the coarse-grained, attractive
teraction potential.

It should be mentioned that our expression for the drop
free energy neglects the contribution of all other fluctuatio
~e.g., distortion of the droplet surface that would lead to
additional droplet configurational entropy!. Such a calcula-
tion involves the determination of the contribution of Gau
ian fluctuations about the two extremal configurations. O
analysis of the nucleation rate in terms of a functional in
gral suggests that previously developed techniques
saddle-point evaluations of functional integrals may be pr
itably used for the calculation of the addition
02612
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configurational-entropy term. This exercise is left as futu
work, as is the numerical solution of the Euler-Lagran
equation that will provide a numerical justification for th
density-profile ansatz. An additional topic of interest that w
be addressed in future work is a detailed comparison of
sults of the corrected~to account for translations! predictions
of our self-consistent revision of classical nucleation the
with experimental results on homogeneous nucleation
gases that can be described well by approximate inter
lecular potentials~such as the Lennard-Jones potential; s
e.g., Appendix C!.
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APPENDIX A: GRADIENT EXPANSION

As argued in the main text, the action in the classi
partition function Eq.~10! is a function of the local density
r(r ),

bScl@r#5E dr H 2bmr~r !1
1

2
b f ~r !r~r !1

1

2
bgr2~r !

1r~r !ln@L3r~r !#2r~r !J , ~A1!

where the nonlocal, attractive termf (r ), defined in Eq.~5!,
is

f ~r !5E dr 8Vatt~ ur2r 8u!r~r 8!. ~A2!

The attractive potential is assumed spherically symmet
The local densityr(r 8) in Eq. ~A2! is expanded in a Taylor
expansion aboutr , and its substitution inf (r ) introduces the
following terms inScl@r#:

E dr dr 8 f ~r !r~r !5 f 01 f 11 f 21•••, ~A3!

where f i are defined to be

f 05E dr dr 8r~r !Vatt~ ur2r 8u!r~r !, ~A4a!

f 15E dr dr 8r~r !Vatt~ ur2r 8u!
dr

dr i
U

r

~r2r 8! i , ~A4b!

f 25
1

2E dr dr 8r~r !Vatt~ ur2r 8u!
d2r

dr idr j
U

r

~r2r 8! i~r2r 8! j .

~A4c!
7-10



re
g
ro

e

s

e

io

a

g

-

et

io

ult

of

the

CLASSICAL NUCLEATION THEORY REVISITED PHYSICAL REVIEW E67, 026127 ~2003!
Only leading-order terms in the gradient expansion were
tained. The expansion, which assumes long-wavelen
variations of the density, can be made more formal by int
ducing a scale parameter as described in Ref.@33#.

For an infinite system witha the strength of the attractiv
interaction, defined in Eq.~15!,

f 052aE drr2~r !. ~A5!

Symmetry arguments~spherically symmetric attractive
potential! show that the linear-gradient termf 1 vanishes. The
third term may be reexpressed in term ofx5r2r 8 as fol-
lows:

f 25
1

2E d rr~r !
d2r

dr idr j
U

r
E dxVatt~ uxu!xixj ~A6a!

5
1

2 E drr~r !
d2r

dr•dr U
r
H 1

3E dx Vatt~ uxu!x2J
~A6b!

5m2E dr S dr

dr D
r

2

, ~A6c!

where the termxi•xj was replaced byxi
2 because the cros

terms are odd functions,xi
25x•x/3 since all three directions

are equivalent~spherical symmetry!, the surface term was
dropped in the integration by parts, and the second mom
of the attractive potentialm2 was defined in Eq.~22!.

Thus, the gradient approximation to the classical act
becomes

bS@r#5E dr H 1

2
bm2~“r!22bmr~r !1

1

2
b~g2a!r2~r !

1r~r !ln@L3r~r !#2r~r !J . ~A7!

This derivation justifies Eq.~21! in the main text.

APPENDIX B: LARGE-DROPLET LIMIT

We present exact and limiting values for integrals th
appear in the main text as calculated byMathematica@23#.
The Rc@j limiting values were obtained by first evaluatin
the integrals for a given droplet radius~the integrals usually
evaluate to polylogarithm functions! and then the large
droplet limit was taken. In some~explicitly mentioned!
cases, the limitr l@rv was taken before the large-dropl
limit to avoid indeterminate limits.

The integrals that follow are necessary for the evaluat
of the volume term of the droplet free energy
02612
-
th
-

nt

n

t

n

lim
Rc→`

E
0

`

drr 2@ tanh~r 2Rc!21#

5 lim
Rc→`

F~3,2z!

2

52
2

3
Rc

32
p2

6
Rc1O~Rc

22n11!, ~B1a!

lim
Rc→`

E
0

`

dr r 2sech2~r 2Rc!

5 lim
Rc→`

2F~2,2z!

52Rc
21

p2

6
1O~Rc

22n!, ~B1b!

where n51,2,3, . . . , z5exp(2Rc), and the polylogarithm
function F(n,z) is

F~n,z!5 (
k51

`
zk

kn
. ~B2!

It is relatively easy to note that the following general res
holds:

lim
Rc→`

E
0

`

dr r 2@ tanh~r 2Rc!21#n5
~22!n

3
Rc

3 . ~B3!

A limit required for the expression of the number
monomers in the critical clusterNcr in terms of the critical
radius, with the additional assumption thatr l@rv , is

lim
Rc→`

E
0

Rc
dr r 2@12tanh~r 2Rc!#5

2

3
Rc

32Rc
2 ln~2!.

~B4!

The integrals that lead to the surface-energy term and
square-gradient surface tension evaluate to

lim
Rc→`

E
0

`

dr sech4~r 2Rc!5 lim
Rc→`

H 4z2~31z!

3~11z!2 J
5

4

3
1O@exp~2Rc!#, ~B5a!

lim
Rc→`

E
0

`

dr r 2 sech4~r 2Rc!

5 lim
Rc→`

H 2
2@z1~11z!F~2,2z!#

3~11z! J
5

4

3
Rc

21
p226

9
1O~Rc

22n!. ~B5b!
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Finally, the limiting value of the exact integral~in the
spirit of Eq.~31a! of Ref. @12#! that appears in the evaluatio
of the Jacobian Eq.~39! in the limit r l@rv is

lim
Rc→`

E
0

`

dx x2
sech4~x2Rc!

12tanh~x2Rc!

5 lim
Rc→`

$ ln~11z!2F~2,2z!%

52Rc
212Rc . ~B6!

APPENDIX C: INTERACTION POTENTIAL

The numerical evaluation of the modified classical nuc
ation rate requires, apart from the density profile, the eva
ation of the strength and the interaction range of the coa
grained attractive potentialVatt. For completeness, w
present these parameters for the~modified, fully attractive!
Lennard-Jones~LJ! potential, decomposed as described
Ref. @34#, namely,

Vatt~r !52e for r ,21/6s, ~C1a!

Vatt~r !54eS s12

r 12
2

s6

r 6 D for r>21/6s. ~C1b!
y

v.

02612
-
-
e-

Then, one finds that the strength of the attractive potentia

aLJ5
32p

9
A2es3, ~C2!

the second moment of the attractive potential evaluates

m252
1

6E dr r 2Vatt~r !5
48

35
25/6eps5, ~C3!

and the corresponding interaction rangelLJ is

lLJ5S 27

35D
1/2

21/6s. ~C4!

Caution has to be exercised in using these formulas w
comparing theoretical predictions with experimental resu
The approximation of the intermolecular interaction poten
by a Lennard-Jones potential is expected to be reasonabl
nonpolar, almost spherical molecules but not for small po
molecules such as water. Moreover, the choice of the h
sphere diameter, i.e., the mapping of the Lennard-Jones
tential to a hard-sphere fluid is not unique@22#. Alternatively,
the Lennard-Jones parameters may be determined by a fi
procedure that ensures that bulk thermodynamic prope
or the macroscopic surface tension are obtained@34#.
,
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